Monatshefte für Chemie *Chemical Monthly*

© Springer-Verlag 1996 **Printed in Austria**

Stereocontrolled Synthesis of 3-Alkylindolines from (Z)-2-Hydroxyindolenines

M. S. Morales-Rios, C. Garcia-Martinez, M. A. Bucio, and P. Joseph-Nathan

Departamento de Química del Centro de Investigación y der Estudios Avancados, Instituto Politécnico Nacional, M6xico, D.F., 07000 M6xico

Summary. A convenient process for the synthesis of 3-alkylindolines 2 and their transformation into *cis-fused* tricyclic y-lactones 3 from allylic alcohols 1, mediated by a *Grignard* reagent, is described. This process proceeds with high stereocontrol at the two newly formed contiguous stereogenic centres. By oxidation with chromium oxide, 2-oxindole derivatives 4 are obtained from 3-alkylindolines 2.

Keywords. 2-Hydroxyindolenines; Stereocontrolled *Grignard* atkylation; 3-Alkylindolines; Furo[2,3-b]indol-2-ones.

Stereokontrollierte Synthese yon 3-Alkylindolinen aus (Z)-2-Hydroxyindoleninen

Zusammenfassung. Eine einfache Methode zur Herstellung der 3-Mkylindoline 2 und deren Umsetzung zu den *cis-kondensierten* tricyclischen 7-Lactonen 3 aus den Allylalkoholen 1 mittels einer Grignard-Verbindung wird beschrieben. Die Reaktion verläuft unter hoher Stereoselektivität bezüglich der zwei neu gebildeten Asymmetriezentren. Durch Oxidation mit Chromtrioxid erhält man aus den 3-Alkylindolinen 2 die 2-Oxindolderivate 4.

Introduction

In the course of our research on 2-hydroxyindolenines, we recently investigated the conjugated addition of methylmagnesium iodide to 2-hydroxyindolenine la and to its 5-methoxyl derivative as a new route towards the synthesis of physostigmine [1], the main component of *Physostigma venenosurn* Balf. In the present work, we describe a general approach to the synthesis of 3-alkylindolines 2 *via* the stereocontrolled formation of a carbon-carbon bond and of *cis*-fused γ -lactones 3 which are of potential interest for the synthesis of alkaloids with a hexahydropyrrolo[2, 3-b]indole framework [2].

Results and Discussion

In this study we have found that treatment of (Z) -2-hydroxyindolenines $1a-c$, possessing a tetrasubstituted double bond, with 4 molar equivalents of *Grignard* reagent $(R^2MgX; R^2$ = methyl, ethyl, *iso-propyl* and *tert*-butyl) in a solvent mixture of diethyl ether and tetrahydrofuran leads with high regio- and stereoselectivity to the corresponding conjugated addition products (Scheme 1). The generality of the present reaction is indicated in Table 1; it can be seen that both the nature and the ratio of the obtained products 2 and 3 are influenced by the bulkiness of the alkyl group of the *Grignard* reagent as well as by the experimental conditions. Thus, reaction of compounds $1a-e$ with methylmagnesium iodide leads to equilibrated $C-2$ epimeric mixtures of *(2R*,3S*,8S*)-* and *(2S*,3S*,SS*)-3-methylindolines (ca.* 1:1), resulting from a ring-chain tautomerization [3]. Diastereomerically pure $(2R^*, 3S^*, 8S^*)$ -3-methylindolines $2a-c$ (entries 1–4) could be isolated from this mixture by fractionated crystallization (mother liquour contains always a C-2 epimeric mixture in the ratio of *ca.* 1:1). The success of the stereocontrolled alkylation can be ascribed to the directing effect of the hydroxyl group [41. The relative stereochemistry of 3-alkylindolines 2 was fully supported by X-ray analysis of 2a [lc] and 1H NMR spectra. Pure samples *of(2R*,3S*,SS*)* isomers of 2 gave 1H NMR spectra in which the signal due to H-2 was always present as a doublet $({}^3J_{\text{H,H}})$ with the hydroxyl hydrogen), whereas the H-2 proton of the *(2S*,3S*,8S*)* isomers appears as a broad singlet, as was observed in the crude epimeric mixtures.

a Isolated by crystallization from the epimetric mixture; b epimeric mixtures (except 3t)

Scheme 1

The alkylation of 2-hydroxyindolenine la with ethyl or *iso-propyl Grignard* reagents also proceeds with high regioselectivity to afford, after crystallization, the corresponding diastereomerically pure 3-alkylindolines 2d ($R^2 = Et$) or 2e ($R^2 = i$ -Pr), in addition to the predominantly lactonized products 3d or 3e as shown in entries 5-9 of Table 1. The predominance of the lactonized products can be explained by the steric hindrance of the alkyl group at C-3 which favors intramolecu-

Entry	Substrate	Reagent		Conditions		Overall	Products	Ratio
		R^2	\boldsymbol{X}	Temp. $(^{\circ}C)$	Time (min)	yield ^a (%)		$2/3^b$
1 ^c	1a	Me	I	25	15	40	2a	1:0
$\overline{2}$	1b	Me		25	20	33	2 _b	1:0
3	1b	Me	T	θ	20	47	2 _b	1:0
4	1c	Me	I	25	20	29	2c	1:0
5	1a	Et	Br	25	5	30	2d, 3d	3:7
6	1a	Et	Br	θ	15	46	2d.3d	4:6
7	1a	Et	Br	-78	60	61	$2d$, $3d$	4:6
8	1a	i - Pr	Br	Ω	15	58	$2e$, $3e$	4.6
9	1a	i -Pr	Br	-78	60	74	$2e$, $3e$	3:7
10 ^c	1a	$t - Bu$	Br	θ	30	21	3f	0:1

Table 1. Reaction of $1a-c$ with R^2MgX according to the general procedure

^a Estimated from the isolated pure products 2 and 3; ^b obtained as equilibrated mixtures of *anti/syn* diastereomers (2:1, except 3f) according to NMR; \degree attempts to perform the reaction at $-78\degree$ C failed

lar cyclization of the initially formed 3-alkylindoline. This conclusion is based on the observation that compounds 2d and 2e were smoothly converted into the corresponding lactones 3d and 3e by standing at room temperature in tetrahydrofuran containing traces of triethylamine. As expected, the less hindered 3-methylindoline 2a is recovered as a mixture of two diastereomers *(ca.* 1:1) under the conditions described above. It is worth noting that the thermodynamically controlled ring closure of 3-alkylindolines 2 affords *cis-fused* 7-1actones 3, as was inferred from NOE experiments, implying that an epimerization occurs at the C-2 hemiaminalic stereogenic center [3] before cyclization.

As for γ -lactones 3d and 3e, they were obtained as unseparable mixtures of two diastereomers in *ca.* 2:1 ratios as determined by ¹H NMR in CDCl₃ solution. In these two cases, the partial epimerization occurs at the acidic stereogenic center C-3 as evidenced by the markedly fast deuterium exchange at C-3 when diastereomeric mixtures of 3d and of 3e were treated with D_2O . A steric hindrance between ethyl or *iso-propyl* groups and the nitrile group should favor *anti* compounds. We have also observed that the conjugated addition is slower at lower temperature, but in general it gave the best results in terms of overall yield. The reaction between la and ethylmagnesium bromide was performed at different temperatures (entries 5-7, Table 1). In the range 25 to 0 °C, the relative yield of 2d changed from 30 to 40%. A further decrease of temperature $(-78 \degree C)$ did not change the ratio between 2d and 3d, but the maximum overall yield (61%) was reached. The structures of compounds 2b-e were confirmed by reaction with chromium oxide in acetic acid to provide oxindoles 4b-e as diastereomerically pure compounds (Scheme 1) in 59, 47, 72, and 51% of isolated yield, respectively.

In agreement with the preceding results, the reaction of la with the bulkier *tert-butylmagnesium* bromide (Table 1, entry 10) results in the formation of lactone

 $3f(R^2 = t-Bu)$ as a single diastereomer in which the nitrile and the *tert*-butyl group at C-3/C-3a are *anti* oriented. The stereochemical assignment was confirmed by a NOE experiment in which irradiation of the *tert*-butyl group ($\delta = 1.06$ ppm) resulted in an enhancement of the H-3 ($\delta = 4.32$ ppm) and H-8a ($\delta = 6.37$ ppm) signals. In this case, the conjugated addition occurred with a comparatively low yield of 21%, and the initially formed 3-t-butylindoline could not be detected. However, two 6-alkylated products were obtained (Scheme 2). These byproducts were isolated by chromatography in 21 and 13% yield and identified by their IR, ${}^{1}H$, and ${}^{13}C$ NMR data as methyl (Z)-3-(1-cyano-2-methoxy-2-oxoethylidene)-2,3-dihydro-2-hydroxy-6-tbutyl-lH-indole-l-carboxylate (5) and methyl 3-(1-cyano-2-methoxy-2-oxoethyl)- $6-t$ -butyl-1H-indole-1-carboxylate (6) (cf. Tables 2 and 3).

The results described above show that the conjugated addition depends strongly on the reaction conditions. These include not only the type of *Grignard* reagent, but also reaction time and temperature. The structures of all 3-alkylindolines, their corresponding lactonized products, and oxindole derivatives are confirmed by their HRMS, IR, ¹H NMR (Table 2), and ¹³C spectroscopic data (Tables 3 and 4). Selective proton decoupling and ${}^{13}C_{1}{}^{1}H$ correlation experiments helped to assign the signals. In conclusion, we have developed a useful and reliable method for the regiospecific introduction of virtually any alkyl group derived from a *Grignard* reagent into 2-hydroxyindolenines to give 3-alkylindolines with stereocontrol at the C-3 and C-8 stereogenic centers, as well as their lactonized derivatives, which may be interesting intermediates in indole alkaloid synthesis $[5, 6]$.

Experimental

All organic solvents were dried according to standard procedures. Starting 2-hydroxyindolenines la-e were prepared from the corresponding methyl $3-(1-cyano-2-methoxy-2-oxoethyl)-1H-indole-$ 1-carboxylates according to a previously published procedure [7]. Compounds 2a and 4a are known [la]. The preparation of 3-alkylindolines and their corresponding lactones were carried out in an Ar atmosphere. *Grignard* reagents were synthesized according to known procedures [8]. Melting points were determined on a Fisher-Johns apparatus and are uncorrected. IR spectra were obtained using a Perkin Elmer 16F PC spectrophotometer. ¹H and ¹³C NMR spectra were recorded on a Varian XL300 spectrometer working at 300 MHz and 75.4 MHz, respectively, and chemical shifts reported in ppm downfield from *TMS.* Column chromatography was carried out on Merck silica gel 60 (230–400 mesh). Analytical TLC was performed on silica gel $60F_{254}$ coated aluminium sheets. HRMS were measured on a Jeol JMS-SX 102A spectrometer with polyethylene glycol 400 as internal standard. The physical and spectroscopic properties of the new products are given in Tables 2-4.

Table 2. Melting points, IR and ¹H NMR data of compounds 1–6

3-Alkylindolines from (Z) -2-Hydroxyindolenines

695

 $(Cond.)$

" The purity of the isolated compounts were determined by TLC in unferent solvents, satisfactory TIKNIS values were commed (*the* 2 0.000 amil),
" recrystallization solvent: ACOEt for **1b**, Et₂O for 2b-e, 3d-f, 4e, and

696

3-Alkylindolines from (Z) -2-Hydroxyindolenines

697

 $^{\rm a}$ Two diastereomers (except 3f), data of main diaster
comer

3-Alkylindolines from (Z)-2-Hydroxyindolenines 699

(2R•3S*•8S*)-Methyl-3-ethyl-3-(•-cyan•-2•meth•xy-2-•x•ethyl)-2•3-dihydr•-2-hydr•xy-1Hindole-l-carboxylate* (2d) and *3a,8a-cis-8-Carbomethoxy-3-cyano-3a-ethyl-3,3a,8,8atetrahydro-2H-furo[2,3-b]indole-2-one* (3d); *general procedure*

To a cooled $(-78 \degree C)$ solution of EtMgBr (463 mg, 3.47 mmol) in a solvent mixture of Et₂O (13 ml) and *THF* (20 ml), a cold solution of **1a** (250 mg, 0.868 mmol) in *THF* (10 ml) was added over a period of 25 min with stirring. The temperature was maintained at -78 °C for 1 h during which time the mixture turned orange. The reaction was quenched with sat. $NH₄Cl$ solution (5 ml), allowed to warm to r.t. and diluted with AcOEt (30ml). The organic layer was decanted, washed with sat. NH₄Cl solution $(2 \times 10 \text{ ml})$, and dried (Na₂SO₄). After evaporation of the solvent *in vacuo*, the residue was separated by flash column chromatography (silica gel, CH₂Cl₂/AcOEt 24:1) to give 95 mg 3d (38%) and then 110 mg **2d** (39%). Two recrystallizations from Et₂O gave slightly greenish crystals of **3d** (yield: 87 mg (35%); mp.: $135-137$ °C) and white needles of **2d** (yield: 73 mg (26%); mp.: $141-143$ °C. For further details see Table 1.

(3S,8S*)-Methyl 3-alkyl-3-(l-cyano-2-methoxy-2-oxoethyl)-2,3-dihydro-2 oxo-l H-indole-1 -carboxylates* (4b-e); *general procedure*

To a stirred solution of 3-alkylindolines $2b-e(0.34 \text{ mmol})$ in AcOH (5 ml), a solution of CrO₃ (1.0 mmol) in H₂O (0.4 ml) was added at 15 °C and stirring was continued at r.t. for 1 h. The mixture was poured over cracked ice (20 g) and extracted with AcOEt (2 \times 50 ml). The organic layer was dried (Na₂SO₄) and concentred under reduced pressure. The crude product was purified by silica gel chromatography $(CH₂C1₂/Et₂O 24:1)$ giving pure (TLC) oxindoles 4b-e. For physical and spectroscopic data see Tables 2 and 3.

Acknowledgements

Partial support of this work by CoNaCyT México is gratefully acknowledged. We thank *I.Q. Luis Velaseo Ibarra* (Instituto de Quimica, UNAM) for recording the HRMS spectra.

References

- [1] a) Morales-Rios MS, Bucio MA, Joseph-Nathan P (1994) Tetrahedron Lett 35: 881; b) Morales-Rios MS, Bucio MA, Garcia-Martinez C, Joseph-Nathan P (1994) Tetrahedron Lett 35: 6087; c) Morales-Rios MS, Bucio MA, Joseph-Nathan P (submitted elsewhere)
- [2] a) Robinson B (1968) In: Manske RHF (ed) The Alkaloids, vol X. Academic Press, New York, pp 383-398; b) Laycock MV, Wright JLC, Findlay JA, Patil AD (1986) Can J Chem 64:1312 and references cited therein
- [3] Rees CW, Sabet CR (1965) J Chem Soc: 870
- [4] a) Swiss KA, Hinkley W, Maryanoff CA, Liotta DC (1992) Synthesis: 127 and references cited therein; b) Yamamoto Y, Nishii S, Ibuka T (1987) J Chem Soc Chem Commun: 464; c) Larchevêque M, Tamagnan G, Petit Y (1989) J Chem Soc Chem Commun: 31; d) Chérest M, Felkin H, Frajerman C, Lion C, Roussi G, Swierczewski G (1966) Tetrahedron Lett 875
- [5] a) Julian PL, Pikl J (1935) J Am Chem Soc 57: 563; b) Sch6nenberger B, Brossi A (1986) Helv Chim Acta 69: 1486; c) Yu Q-S, Brossi A (1988) Heterocycl 27:745 and 1709; d) Lee TBK, Wong GSK (1991) J Org Chem 56:872
- [6] a) Marino JP, Bogdan S, Kimura K (1992) J Am Chem Soc 114: 5566; b) Rosenmund P, Sotiriou A (1975) Chem Ber 108:208
- [7] Morales-Ríos MS, Bucio-Vásquez MA, Joseph-Nathan P (1993) J Heterocycl Chem 30:953
- [8] Garst JF, Ungváry F, Batlaw R, Lawrence KE (1991) J Am Chem Soc 113: 5392

Received December 20, 1995. Accepted January 12, 1996